Individual optical emitters coupled via coherent interactions are attractive qubits for quantum communications applications. Here, we present the first study of single pairs of interacting rare earth ions and determine the interactions between ions in the pair with high resolution. We identify two examples of Er3+ pair sites in Er implanted Si and characterise the interactions using optical Zeeman spectroscopy. We identify one pair as two Er3+ ions in sites of at least C-2 symmetry coupled via a large, 200 GHz, Ising-like spin interaction in both optical ground and excited states. The high measurement resolution allows non-Ising contributions to the interaction of <1% to be observed, attributed to site distortion. By bringing two optical transitions into resonance with a magnetic field, we observe a 0.8 GHz optical interaction of unusual magnetic-dipole/electric-dipole character with strong polarization selection rules. We discuss the use of this type of strongly coupled, field-tunable rare earth pair system for quantum processing.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ