Continued scaling of semiconductor devices has driven information technology into vastly diverse applications. The performance of ultrascaled transistors is strongly influenced by local electric field and strain. As the size of these devices approaches fundamental limits, it is imperative to develop characterization techniques with nanometer resolution and three-dimensional (3D) mapping capabilities for device optimization. Here, we report on the use of single erbium (Er) ions as atomic probes for the electric field and strain in a silicon ultrascaled transistor. Stark shifts on the Er3+ spectra induced by both the overall electric field and the local charge environment are observed. Changes in strain smaller than 3 × 10–6 are detected, which is around 2 orders of magnitude more sensitive than the standard techniques used in the semiconductor industry. These results open new possibilities for 3D mapping of the local strain and electric field in the channel of ultrascaled transistors.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ