We present a scalable strategy to manufacture quantum computer devices, by encoding quantum information in the combined electron-nuclear spin state of individual ion-implanted phosphorus dopant atoms in silicon. Our strategy allows a typical pitch between quantum bits of order 200 nm, and retains compatibility with the standard fabrication processes adopted in classical CMOS nanoelectronic devices. We theoretically predict fast and high-fidelity quantum logic operations, and present preliminary experimental progress towards the realization of a “flip-flop” qubit system.