There is a large body of evidence for the potential of greater computational power using information carriers that are quantum mechanical over those governed by the laws of classical mechanics. But the question of the exact nature of the power contributed by quantum mechanics remains only partially answered. Furthermore, there exists doubt over the practicality of achieving a large enough quantum computation that definitively demonstrates quantum supremacy. Recently the study of computational problems that produce samples from probability distributions has added to both our understanding of the power of quantum algorithms and lowered the requirements for demonstration of fast quantum algorithms. The proposed quantum sampling problems do not require a quantum computer capable of universal operations and also permit physically realistic errors in their operation. This is an encouraging step towards an experimental demonstration of quantum algorithmic supremacy. In this paper, we will review sampling problems and the arguments that have been used to deduce when sampling problems are hard for classical computers to simulate. Two classes of quantum sampling problems that demonstrate the supremacy of quantum algorithms are BosonSampling and Instantaneous Quantum Polynomial-time Sampling. We will present the details of these classes and recent experimental progress towards demonstrating quantum supremacy in BosonSampling.