Scientists have developed a topological photonic chip to process quantum information, promising a more robust option for scalable quantum computers.
The research team, led by RMIT University’s Dr Alberto Peruzzo, has for the first time demonstrated that quantum information can be encoded, processed and transferred at a distance with topological circuits on the chip. The research is published in Science Advances.
The breakthrough could lead to the development of new materials, new generation computers and deeper understandings of fundamental science.
In collaboration with scientists from the Politecnico di Milano and ETH Zürich, the researchers used topological photonics – a rapidly growing field that aims to study the physics of topological phases of matter in a novel optical context – to fabricate a chip with a ‘beamsplitter’ creating a high precision photonic quantum gate.
“We anticipate that the new chip design will open the way to studying quantum effects in topological materials and to a new area of topologically robust quantum processing in integrated photonics technology,” says Peruzzo, Chief Investigator at the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) and Director, Quantum Photonics Laboratory, RMIT.
“Topological photonics have the advantage of not requiring strong magnetic fields, and feature intrinsically high-coherence, room-temperature operation and easy manipulation” says Peruzzo.
“These are essential requirements for the scaling-up of quantum computers.”
Scientists have developed a topological photonic chip to process quantum information, promising a more robust option for scalable quantum computers.
The research team, led by RMIT University’s Dr Alberto Peruzzo, has for the first time demonstrated that quantum information can be encoded, processed and transferred at a distance with topological circuits on the chip. The research is published in Science Advances.
The breakthrough could lead to the development of new materials, new generation computers and deeper understandings of fundamental science.