Hyperdoped Si formed by implantation followed by pulsed laser melting is a promising material for enhanced near-infrared photodetection. To realize the full potential of this material, it is crucial to understand the nature of defects arising from the fabrication process and how these may impact device operation. Here, we identify through deep level transient spectroscopy the presence of a range of defects in the substrate depletion layer that arise from interactions between high dose ion implantation and pulsed laser melting, and investigate their annealing behavior up to 650 degrees C. In particular, the detection of a vacancy complex E-1(0.35) with densities as high as 10(14) cm(-3) indicates that optical transitions between this level and the valence band may compete with the Au donor center, and hence could potentially contribute to the photocurrent in hyperdoped photodiodes. Published under license by AIP Publishing.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ