Building a scalable quantum computer requires the ability to manufacture quantum states with long coherence times, fast operation, high fidelity and high stability. Furthermore, these attributes need to be combined together into a scalable architecture that allows the input, control and read-out of quantum states for error correction.

Since 2003 the Centre’s Precision Donor Qubit in Silicon Platform has invented groundbreaking atomic-scale fabrication technologies to position single phosphorus atoms in silicon with atomic precision. In this Platform qubits are encoded on either the electron or nuclear spins of phosphorus donor atoms in silicon.

 

Atom qubits in silicon have demonstrated many advantages for achieving this, including the longest coherence times in the solid state with 35.6 seconds for the nuclear spin and 0.55 seconds for the electron spin, fast (μs) high fidelity (99.8%) single shot spin read-out and the lowest charge noise environment measured in a semiconductor qubit.

Being able to realise these properties in individual qubits is essential, but the ability to atomically engineer such properties across an array of qubits provides a pathway to scale. We will continue to collaborate across our research teams to demonstrate a full-scale 3-dimentional error-corrected quantum processor in silicon.

 

PLATFORM LEADERS

view all

Featured Publications

view all
Engineering long spin coherence times of spin–orbit qubits in silicon T Kobayashi, J Salfi, C Chua, J van der Heijden, MG House, D Culcer, WD Hutchison, BC Johnson, JC McCallum, H Riemann, NV Abrosimov, P Becker, HJ Pohl, MY Simmons, S Rogge Nature Materials, https://doi.org/10.1038/s41563-020-0743-3 (2020)
Recent progress in atomistic modelling and simulations of donor spin qubits in silicon M Usman Computational Materials Science, 193, 110280 (2021)
Valley interference and spin exchange at the atomic scale in silicon B Voisin, J.Bocquel, A Tankasala, M Usman, J Salfi, R Rahman, MY Simmons, LCL Hollenberg, S Rogge Nature Communications, 11, 6124 (2020)
Exploiting a Single‐Crystal Environment to Minimize the Charge Noise on Qubits in Silicon L Kranz, SK Gorman, B Thorgrimsson, Y He, D Keith, JG Keizer, MY Simmons Advanced Materials, 32, 2003361 (2020)
A two-qubit gate between phosphorus donor electrons in silicon Y He, SK Gorman, D Keith, L Kranz, JG Keizer, MY Simmons Nature, 571, 371 (2019)
Benchmarking high fidelity single-shot readout of semiconductor qubits D Keith, SK Gorman, L Kranz, Y He, JG Keizer, MA Broome, MY Simmons New Journal of Physics, 21, 63011 (2019)
Single-Shot Spin Readout in Semiconductors Near the Shot-Noise Sensitivity Limit D Keith, MG House, MB Donnelly, TF Watson, B Weber, MY Simmons Physical Review X, 9, 041003 (2019)
Spin-orbit coupling in silicon for electrons bound to donors B Weber, YL Hsueh, TF Watson, RY Li, AR Hamilton, LCL Hollenberg, R Rahman, MY Simmons npj Quantum Information, 4, 61 (2018)
Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor M Koch, JG Keizer, P Pakkiam, D Keith, MG. House, E Peretz, MY Simmons Nature Nanotechnology, 14, 137 (2019)
Single-Shot Single-Gate rf Spin Readout in Silicon P. Pakkiam, A. V. Timofeev, M. G. House, M. R. Hogg, T. Kobayashi, M. Koch, S. Rogge, and M. Y. Simmons Physical Review X, 8, 041032 (2018)
A surface code quantum computer in silicon C. Hill, E. Peretz, S. Hile, M. Fuechsle, M.H. House, R. Rahman, G. Klimeck, S. Rogge, M.Y. Simmons and L.C.L. Hollenberg Science Advances, 1, e1500707 (2015)
Atomically engineered electron spin lifetimes of 30 seconds in silicon TF Watson, B Weber, Y-L Hsueh, LCL Hollenberg, R Rahman and MY Simmons Science Advances, 3, e1602811 (2017)
Spatial metrology of dopants in silicon with exact lattice site precision M Usman, J Bocquel, J Salfi, B Voisin, A Tankasala, R Rahman, MY Simmons, S Rogge & LCL Hollenberg Nature Nanotechnology (2016)
Spatially resolving valley quantum interference of a donor in silicon J. Salfi, J.A. Mol, R. Rahman, G. Klimeck, M.Y. Simmons, L.C.L. Hollenberg and S. Rogge Nature Materials, 13, 605 (2014)
Ohm’s Law Survives to the Atomic Scale B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T.C.G. Reusch, D.L. Thompson, W.C.T. Lee, G. Klimeck, L.C.L. Hollenberg and M.Y. Simmons Science, 335, 64 (2012)
Few electron limit of n-type metal oxide semiconductor single electron transistors E. Prati, M. De Michielis, M. Belli, S. Cocco, M. Fanciulli, D. Kotekar-Patil, M. Ruoff, D.P. Kern, D.A. Wharam, J. Verduijn, G.C. Tettamanzi, S. Rogge, B. Roche, R. Wacquez, X. Jehl, M. Vinet and M. Sanquer Nanotechnology, 23, 215204 (2012)

videos

How to Build a Quantum Computer in Silicon

September 20, 2021

Quantum scientists demonstrate world-first 3D atomic-scale quantum chip architecture

September 20, 2021

Fastest 2 Qubit Gate in the West/World

September 20, 2021

World’s first single atom transistor

September 20, 2021