We study the radiation produced by an accelerated time-delay acting on the left moving modes. Through analysis via the Schrodinger picture, we find that the final state is a two-mode squeezed state of the left moving Unruh modes, implying particle production. We analyse the system from an operational point of view via the use of self-homodyne detection with broad-band inertial detectors. We obtain semi-analytical solutions that show that the radiation appears decohered when such an inertial observer analyses the information of the radiation from the accelerated time-delay source. We make connection with the case of the accelerated mirror. We investigate the operational conditions under which the signal observed by the inertial observer can be purified.