A quantum mechanical spin-half system may be characterized abstractly as having a set of two-valued observables which generate infinitesimal rotations in three dimensions. We consider a concrete realization of such a two-level system within the formalism of ensembles on configuration space, an approach which is not only capable of describing quantum mechanical systems but allows also for theories that are generalizations of quantum theory. Such a spin-half system may be called a rotational bit or robit, to distinguish it from the standard quantum qubit. After reviewing ensembles on configuration space and examining the example of constructing representations of the Galilean Lie algebra for the free particle, we construct probabilistic models for ensembles that consist of one and two spin-half systems. In the case of a single spin-half system, there are two main requirements: the configuration space must be a discrete set, labeling the outcomes of two-valued spin observables, and these observables must provide an algebraic representation of so(3). The case of a pair of spin-half systems is more complicated, in that additional physical requirements concerning locality and subsystem independence must also be taken into account and now the observables must provide an algebraic representation of so(3) ⊕ so(3). We compare the resulting theories to the corresponding quantum mechanical systems.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ