We quantify the maximum amount of entanglement of formation (EoF) that can be achieved by continuous-variable states under passive operations, which we refer to as the EoF potential. Focusing, in particular, on two-mode Gaussian states we derive analytical expressions for the EoF potential for specific classes of states. For more general states, we demonstrate that this quantity can be upper bounded by the minimum amount of squeezing needed to synthesize the Gaussian modes, a quantity called squeezing of formation. Our work, thus, provides a link between nonclassicality of quantum states and the nonclassicality of correlations.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ