Publication

Magnetic noise from ultrathin abrasively deposited materials on diamond

08/11/2018

Scott E. Lillie, David A. Broadway, Nikolai Dontschuk, Ali Zavabeti, David A. Simpson, Tokuyuki Teraji, Torben Daeneke, Lloyd C. L. Hollenberg, and Jean-Philippe Tetienne

Phys. Rev. Materials, 2, 116002 (2018)

Magnetic noise from ultrathin abrasively deposited materials on diamond

Sensing techniques based on the negatively charged nitrogen-vacancy (NV) center in diamond have emerged as promising candidates to characterize ultrathin and 2D materials. An outstanding challenge to this goal is isolating the contribution of 2D materials from undesired contributions arising from surface contamination and changes to the diamond surface induced by the sample or transfer process. Here we report on such a scenario, in which the abrasive deposition of trace amounts of materials onto a diamond gives rise to a previously unreported source of magnetic noise. By deliberately scratching the diamond surface with macroscopic blocks of various metals (Fe, Cu, Cr, Au), we are able to form ultrathin structures (i.e., with thicknesses down to <1nm), and find that these structures give rise to a broadband source of noise. Explanation for these effects are discussed, including spin and charge noise native to the sample and/or induced by sample-surface interactions, and indirect effects, where the deposited material affects the charge stability and magnetic environment of the sensing layer. This work illustrates the high sensitivity of NV noise spectroscopy to ultrathin materials down to subnanometer regimes—a key step toward the study of 2D electronic systems—and highlights the need to passivate the diamond surface for future sensing applications in ultrathin and 2D materials.

University: University of Melbourne

Authors Centre Participants: Mr. Scott Lillie, Mr. David Broadway, Dr. Nikolai Dontschuk, Prof. Lloyd C.L. Hollenberg, Dr. Jean-Philippe Tetienne, Ali Zavabeti, David A. Simpson, Tokuyuki Teraji, Torben Daeneke

Source: Other

Publication Type: Refereed Journal article

DOI Link: DOI Link

Filter By
Year
Publication Type
Programs