Whispering-gallery-(WG) mode resonators are machined from a boule of single-crystal isotopically pure silicon-28. Before machining, the as-grown rod is measured in a cavity, with the best Bragg confined modes exhibiting microwave Q factors on the order of a million for frequencies between 10 and 15 GHz. After machining the rod into smaller cylindrical WG-mode resonators, the frequencies of the fundamental mode families are used to determine the relative permittivity of the material to be 11.488±0.024 near 4 K, with the precision limited only by the dimensional accuracy of the resonator. However, the machining degraded the Q factors to below 4×104. Raman spectroscopy is used to optimize postmachining surface treatments to restore high-Q-factors. This is an enabling step for the use of such resonators for hybrid quantum systems and frequency-conversion applications, as silicon-28 also has very low phonon losses, can host very narrow linewidth spin ensembles, and is a material commonly used in optical applications.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ