Publication

Integrated photonic platform for quantum information with continuous variables

07/12/2018

F Lenzini, J Janousek, O Thearle, M Villa, B Haylock, S Kasture, L Cui, H Phan, D Viet, H Yonezawa, PK Lam, EH Huntington, M Lobino

Science Advances, 4, eaat9331 (2018)

Integrated photonic platform for  quantum information with continuous variables

Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols. We measure a squeezing level of − 1.38 ± 0.04 dB and demonstrate entanglement by verifying an inseparability criterion I = 0.77 ± 0.02 < 1. Our platform can implement all the processes required for optical quantum technology, and its high nonlinearity and fast reconfigurability make it ideal for the realization of quantum computation with time encoded continuous-variable cluster states.

University: Griffith University, Australian National University, UNSW Sydney

Authors Centre Participants: Dr. Jiri Janousek, Mr. Matteo Villa, Mr. Benjamin Haylock, Dr. Hidehiro Yonezawa, Prof. Ping Koy Lam, Prof. Elanor H. Huntington, A. Prof. Mirko Lobino, F Lenzini, O Thearle, S Kasture, L Cui, H Phan, D Viet,

Source: Science Advances

Publication Type: Refereed Journal article

DOI Link: DOI Link

Filter By
Year
Publication Type
Programs