The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator is particularly appealing for fault-tolerant quantum computing with bosons because Gaussian operations on encoded Pauli eigenstates enable Clifford quantum computing with error correction. We show that applying GKP error correction to Gaussian input states, such as vacuum, produces distillable magic states, achieving universality without additional non-Gaussian elements. Fault tolerance is possible with sufficient squeezing and low enough external noise. Thus, Gaussian operations are sufficient for fault-tolerant, universal quantum computing given a supply of GKP-encoded Pauli eigenstates.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ