In this article, we present multiscale modeling of triplet exciton energy migrating through the archetypical poly(p-phenylene vinylene) (PPV) polymer in the crystal phase. We combine electronic structure calculations with coupled exciton-nuclear quantum dynamics in order to parameterize exciton evolution in J- and H-aggregate configurations. We then apply this parameterization to a master-equation approach to describe transport at the nanoscale. We find that triplet transport is characterized by two remarkably different components: a fast and coherent intrachain and a slow and incoherent interchain. Energy migration along the polymer backbone is accompanied by coherent superpositions developing between neighboring sites in the first 20 fs; however, no interchain coherence develops. The nonequilibrium exciton density exhibits an initial ultrafast ballistic spread followed by normal diffusive propagation. At room temperature, the diffusion coefficients along the respective interchain axes are found to be Da = 2.48 × 10–2 cm2 s–1, Db = 4.18 × 10–2 cm2 s–1, and Dc = 3.03 cm2 s–1 along the fast axis.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ