The growth of 3D imaging across a range of sectors has driven a demand for beam steering technology. Fields as diverse as autonomous vehicles and medical imaging can benefit from a high speed, adaptable method of beam steering. We present a monolithic, submicrosecond electro-optic switch as a solution toward the need for reliability, speed, dynamic addressability, and compactness. Here, we demonstrate a laboratory-scale, solid-state light detection and ranging system, using the electro-optic switch to launch modulated coherent light into free space and then to collect the reflected signal. We use coherent detection of the reflected light to simultaneously extract the range and axial velocity of targets at each of the several electronically addressable output ports.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ