The set of all qubit states that can be steered to by measurements on a correlated qubit is predicted to form an ellipsoid-called the quantum steering ellipsoid-in the Bloch ball. This ellipsoid provides a simple visual characterization of the initial two-qubit state, and various aspects of entanglement are reflected in its geometric properties. We experimentally verify these properties via measurements on many different polarization-entangled photonic qubit states. Moreover, for pure three-qubit states, the volumes of the two quantum steeling ellipsoids generated by measurements on the first qubit are predicted to satisfy a tight monogamy relation, which is strictly stronger than the well-known monogamy of entanglement for concurrence. We experimentally verify these predictions, using polarization and path entanglement. We also show experimentally that this monogamy relation can be violated by a mixed entangled state, which nevertheless satisfies a weaker monogamy relation.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ