We analyze the dynamics of a one-dimensional vertical Fabry-Perot cavity, where the upper mirror levitates due to intracavity radiation pressure force. A perturbative approach is used based around separation of timescales, which allows us to calculate the physical quantities of interest. Due to the dynamics of the cavity field, we find that the upper mirror’s motion will always be unstable for levitation performed using only a single laser. Stability can be achieved for two lasers, where one provides the trapping potential and the other a damping effect, and we locate and characterize all parameter regimes where this can occur. Finally we analyze photothermal effects due to heating of the mirror substrate. We show that this can stabilize the system, even with only a single input laser, if it acts to increase the optical path length of the cavity. This work serves as a foundation for understanding how levitated optical cavity schemes can be used as stable metrological platforms.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ