Abstract: Optical systems are often subject to parametric instability caused by the delayed response of the optical field to the system dynamics. In some cases, parasitic photothermal effects aggravate the instability by adding new interaction dynamics. This may lead to the possible insurgence or amplification of parametric gain that can further destabilize the system. In this paper, we show that the photothermal properties of an optomechanical cavity can be modified to mitigate or even completely cancel optomechanical instability. By inverting the sign of the photothermal interaction to let it cooperate with radiation pressure, we achieve control of the system dynamics to be fully balanced around a stable equilibrium point. Our study provides a feedback solution for optical control and precise metrological applications, specifically in high-sensitivity resonating systems that are particularly susceptible to parasitic photothermal effects, such as our test case of a macroscopic optical levitation setup. This passive stabilization technique is beneficial for improving system performance limited by photothermal dynamics in broad areas of optics, optomechanics, photonics, and laser technologies.
More Articles
The 2023 Boyer Lecture series is called 'The Atomic Revolution' and is presented by Professor Michelle Simmons AO, a pioneer in atomic electronics and global leader in quantum computing.
READCQC2T Director Professor Michelle Simmons AO and Chief Investigator Professor Yuerui (Larry) Lui were recognised in the prestigious 2023 Prime Minister’s award ceremony held at Parliament House last n
READAn international team of researchers has developed a technology that has shattered a world record in continuous variable quantum teleportation. This latest technology offers a viable pathway enroute t
READFault-tolerant, error-corrected quantum computation is commonly acknowledged to be crucial to the realisation of large-scale quantum algorithms that could lead to extremely impactful scientific or com
READEngineers show that a jellybean-shaped quantum dot creates more breathing space in a microchip packed with qubits.
READ