A Cavity-Enhanced Room-Temperature Broadband Quantum Memory

Mr Dylan Saunders
University of Oxford
1pm Friday 26 August 2016
CQC2T Conference Room Level 2, Newton Building, UNSW

Broadband quantum memories hold great promise as multiplexing elements in future photonic quantum information protocols. Alkali vapour Raman memories combine high-bandwidth storage, on-demand read-out, and operation at room temperature without collisional fluorescence noise. However, previous implementations have required large control pulse energies and suffered from four-wave mixing noise. Here we present a Raman memory where the storage interaction is enhanced by a low-finesse birefringent cavity tuned into simultaneous resonance with the signal and control fields, dramatically reducing the energy required to drive the memory. By engineering anti-resonance for the anti-Stokes field, we suppress four-wave mixing and report the lowest unconditional noise floor yet achieved in a Raman-type warm vapour memory.