Centre updates

CQC2T researchers propose new type of qubit

Prof Andrea Morello and his team at UNSW has developed a new architecture for quantum computing, based on novel ‘flip-flop qubits’, that promises to make the large-scale manufacture of quantum chips dramatically easier.

Artist's impression of the 'flip-flop' qubits exhibiting quantum entanglement. Tony Melov/UNSW

“What the team have invented is a new way to define a ‘spin qubit’ that uses both the electron and the nucleus of the atom. Crucially, this new qubit can be controlled using electric signals, instead of magnetic ones," said Prof Morello.

Read more at the UNSW Newsroom

Access the full paper at Nature Communications.

Quantum sheds new light on electron spin resonance techniques

A team led by CQC2T's Prof Lloyd Hollenberg at the University of Melbourne have demonstrated a dramatically improved electron spin resonance technique using the quantum properties of diamond.

Electron spin image of copper (II) ions in a patterned region of the diamond defined by the kangaroo. The scale bar in the image is 10 micrometers. Image credit: David Simpson

Hollenberg led an interdisciplinary team that improved the sensitivity of ESR by orders of magnitude compared to existing techniques using a non-invasive method. The technology will be used to understand biochemistry and could reveal how transition metal ions affect brain health.

Read more at Eurekalert.

Access the full paper at Nature Communications.